2D:Wufi 2D

Aus Wufiwiki
Version vom 30. Oktober 2008, 13:12 Uhr von Admin (Diskussion | Beiträge) (Schützte „2D:Wufi 2D“ [edit=sysop:move=sysop])
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springenZur Suche springen

Main Page WUFI 2D

What is WUFI?

WUFI is the acronym for "Wärme- und Feuchtetransport instationär" ("Transient Heat and Moisture Transport").

WUFI is designed to calculate the simultaneous heat and moisture transport in one- or two-dimensional building components.

A comfortable Windows® user interface allows quick set-up of a calculation project, easy change of parameters for numerical experiments and comfortable viewing of the results as graphics or as an animation.

The physical and numerical ideas underlying WUFI are developed and discussed in the doctoral thesis:

Künzel, H.M.:
Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransports in Bauteilen mit einfachen Kennwerten.
Dissertation Universität Stuttgart 1994
 
(may be ordered from IBP: http://www.hoki.ibp.fhg.de/index.html )  
or
 
Künzel, H.M.:
Simultaneous Heat and Moisture Transport in Building Components.
One- and two-dimensional calculation using simple parameters.
IRB Verlag 1995
 
(may be ordered from IRB Verlag, Stuttgart: http://www.irb.fhg.de ).

In the calculation of heat transport, WUFI takes into account:

  • thermal conduction
  • enthalpy flows through moisture movement with phase change
  • short-wave solar radiation
  • nighttime long-wave radiation cooling (optional, and with

TRY or DAT weather data only).

Convective heat transport by air flows has been disregarded, since it is usually difficult to quantify. As it is rarely one-dimensional, including it in WUFI-1D would not be very useful. A future WUFI-2D version may include it.

The vapor transport mechanisms included in WUFI are:

  • vapor diffusion
  • solution diffusion

Again, convective vapor transport by air flows has been ignored.

The liquid transport mechanisms taken into account are:

  • capillary conduction
  • surface diffusion.

Seepage flow through gravitation, hydraulic flow through pressure differentials, as well as electrokinetic and osmotic effects have not been included.

The choice of temperature and relative humidity as driving potentials allows the use of simple, easily comprehensible storage and transport coefficients. These can thus readily be derived from standard material data if no measured data are available and utmost precision of the results is not required.

The boundary conditions for each time step are expressed in terms of meteorological data (temperature, relative humidity, driving rain, radiation), since in building physics these are the relevant parameters specifying the conditions at surfaces exposed to natural weather.
However, conditions for laboratory experiments (e.g. imbibition measurements) can also be expressed as 'meteorological' data.